منابع مشابه
The hyper-Wiener index of graph operations
Let G be a graph. The distance d(u,v) between the vertices u and v of the graph G is equal to the length of a shortest path that connects u and v. The Wiener index W(G) is the sum of all distances between vertices of G, whereas the hyper-Wiener index WW(G) is defined as WW(G)=12W(G)+12@?"{"u","v"}"@?"V"("G")d (u,v)^2. In this paper the hyper-Wiener indices of the Cartesian product, composition,...
متن کاملMORE ON EDGE HYPER WIENER INDEX OF GRAPHS
Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge set E(G). The (first) edge-hyper Wiener index of the graph G is defined as: $$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$ where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). In thi...
متن کاملThe Hyper-Wiener Polynomial of Graphs
The distance $d(u,v)$ between two vertices $u$ and $v$ of a graph $G$ is equal to the length of a shortest path that connects $u$ and $v$. Define $WW(G,x) = 1/2sum_{{ a,b } subseteq V(G)}x^{d(a,b) + d^2(a,b)}$, where $d(G)$ is the greatest distance between any two vertices. In this paper the hyper-Wiener polynomials of the Cartesian product, composition, join and disjunction of graphs are compu...
متن کاملOn the Steiner hyper-Wiener index of a graph
For a connected graph G and an non-empty set S ⊆ V (G), the Steiner distance dG(S) among the vertices of S is defined as the minimum size among all connected subgraphs whose vertex sets contain S. This concept represents a natural generalization of the concept of classical graph distance. Recently, the Steiner Wiener index of a graph was introduced by replacing the classical graph distance used...
متن کاملCalculating the hyper–Wiener index of benzenoid hydrocarbons
A method for the calculation of the hyper–Wiener index (WW ) of a benzenoid system B is described, based on its elementary cuts. A pair of elementary cuts partitions the vertices of B into four fragments, possessing nrs , r, s = 1, 2 vertices. WW is equal to the sum of terms of the form n11 n22 + n12 n21 . The applicability of the method is illustrated by deducing a general expression for WW of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Serbian Chemical Society
سال: 2003
ISSN: 0352-5139
DOI: 10.2298/0352-51390312943g